
Joint Media Streaming Optimization of Energy and
Rebuffering Time in Cellular Networks

Zeqi Lai∗, Yong Cui∗, Yayun Bao†, Jiangchuan Liu‡, Yingchao Zhao§ and Xiao Ma∗
∗Department of Computer Science and Technology, Tsinghua University, Beijing, PR China

Email: uestclzq@gmail.com, cuiyong@tsinghua.edu.cn, thumax9@gmail.com
†State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, PR China
‡School of Computing Science, Simon Fraser University, Metro-Vancouver, Canada

§Department of Computer Science, City University of Hong Kong, Hong Kong, PR China

Email: jimmybao0730@gmail.com, jcliu@cs.sfu.ca, zhaoyingchao@gmail.com

Abstract—Streaming services are gaining popularity and have
contributed a tremendous fraction of today’s cellular network
traffic. Both playback fluency and battery endurance are sig-
nificant performance metrics for mobile streaming services.
However, because of the unpredictable network condition and
the loose coupling between upper layer streaming protocols and
underlying network configurations, jointly optimizing rebuffering
time and energy consumption for mobile streaming services
remains a significant challenge. In this paper, we propose a novel
framework that effectively addresses the above limitations and
optimizes video transmission in cellular networks. We design
two complementary algorithms, Rebuffering Time Minimiza-
tion Algorithm (RTMA) and Energy Minimization Algorithm
(EMA) in this framework, to achieve smoothed playback and
energy-efficiency on demand over multi-user scenarios. Our
algorithms integrate cross-layer parameters to schedule video
delivery. Specifically, RTMA aims at achieving the minimum
rebuffering time with limited energy and EMA tries to obtain
the minimum energy consumption while meeting the rebuffering
time constraint. Extensive simulation demonstrates that RTMA
is able to reduce at least 68% rebuffering time and EMA can
achieve more than 27% energy reduction compared with other
state-of-the-art solutions.

I. INTRODUCTION

Video streaming services, such as YouTube, Netflix, and

Hulu are gaining immense popularity on mobile networks

thanks to the rapid development of high speed 3G/LTE tech-

nologies. It has been estimated that more than half of the mo-

bile data traffic is now contributed by streaming applications

and it will grow to 69% by 2018 [3]. Significant efforts have

focused on optimizing the playback in mobile environments

[6], [10], [24], [27] to satisfy user experience. Besides the

playback fluency, as the battery technologies have not been

keeping up with the rapid advancement of mobile devices [20],

energy consumption is also becoming an important concern

when designing and implementing streaming protocols for

mobile devices. Because of the sustained transferring property

of streaming services, wireless interfaces are forced to be

powered up and are responsible for a large amount of energy

consumption when running video streaming applications in

power-constraint mobile devices. It is crucial for both services

providers and mobile network operators to optimize the user

experience while achieving energy efficiency.

Maintaining the streaming fluency while optimizing the

energy consumption in mobile environments is extremely

challenging. First, the inherent variable bandwidth in mobile

networks makes it difficult to guarantee smooth playback. The

variability is caused by many unpredictable external factors

such as signal strength, mobility and workload changes at the

base station. The dynamic wireless environment will cause

inevitable viewing interruption and rebuffering delay, i.e. the

time interval separating the viewing time of a streaming

event [32]. Previous works try to ensure smooth playback by

limiting the waiting queue [17], satisfying either the video

packet deadline [19] or the required data rate in each time

slot [30]. However, only considering video tasks’ deadline

ignores the viewing interruption during the playback. The

variable bandwidth and the resource competition in multi-user

scenarios also make it difficult to satisfy the required data rate

in every slot.

Second, the loose coupling between the streaming protocols

and the underlying radio resource management also results

in serious energy waste. In typical 3G/LTE networks, user

equipments (UEs) follow the radio resource control (RRC)

protocol for dynamic acquisition of radio resource. According

to the RRC state machine, a UE will not switch to a low power

state immediately after data transmission and will keep in the

high-power state until an inactivity timeout. Such mechanism

will lead to significant energy waste, namely tail energy,

especially for typical streaming protocols implemented in real

mobile video services. For example, YouTube, Dailymotion

and Vimeo have implemented the ON-OFF protocol in their

Android client player for pushing video chunks, through which

a player uses a persistent TCP connection and simply stops

reading from the TCP socket during an OFF period [14].

During the OFF period no data is received but the UE still

keeps in high power state, resulting in significant energy waste.

Aiming at jointly optimizing the rebuffering time and the

energy consumption for mobile streaming services, in this

paper we propose a streaming content scheduling framework

that can effectively address above challenges. To optimize the

video delivery and manage the resource competition under a
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dynamic wireless environment, our framework is designed as a

gateway solution across multiple video flows of all connected

users. The framework works in two complementary modes

on demand: the rebuffering time minimization (RTM) mode

for minimizing the rebuffering time while limiting the energy

consumption in a desirable range, and the corresponding

energy minimization (EM) mode that can optimize the energy

consumption while limiting the rebuffering time in a tunable

tolerance range. Furthermore, we design two online scheduling

algorithms for each mode respectively. Through integrating

cross layer parameters such as signal strength, RRC timer

and video bit-rate, the proposed online algorithms are able to

judiciously make data allocation decisions to jointly optimize

the rebuffering time and the energy cost in various scenarios.

Our gateway-level solution has minimum dependence on

specific cellular technologies, making it possible to be imple-

mented in multiple 3G/LTE wireless access networks, such as

UMTS, HSPA, LTE or LTE-A. In summary, our contributions

in this paper can be concluded as:

• We propose a scheduling framework with two com-

plementary modes to jointly optimize the rebuffering

time and the energy consumption for mobile streaming

services. Based on our framework, we integrate a set of

cross layer parameters to model the rebuffering time and

the energy consumption over cellular networks.

• We establish the hardness of the rebuffering time mini-

mization problem and design an online algorithm RTMA

in multi-users scenario to optimize the rebuffering time

while keeping the energy consumption limited.

• We design a non-prediction online algorithm EMA based

on Lyapnuov optimization to achieve the energy con-

servation while meeting the rebuffering time limitation.

We also prove the bound of energy and rebuffering time

theoretically.

The rest of the paper is organized as follows. Section II

reviews existing proposals on performance optimization for

mobile streaming applications. Section III presents our frame-

work overview and modeling. In Section IV, we introduce

the rebuffering time minimization problem and design an

online algorithm. The energy minimization problem is raised

and addressed in Section V. We evaluate the performance of

our solution in Section VI, and finally conclude our work in

Section VII.

II. RELATED WORK

A large number of efforts have been focused on optimizing

the video delivery in terms of user experience and energy

consumption for mobile streaming services. In the following,

we discuss the most important parts of them.

Several kinds of optimization techniques are proposed to

deliver video for mobile users to guarantee user experience

before. Ali et al. aim at characterizing the buffer size needed

for a target probability of playback interruption over video

session [6]. Xu et al. demonstrate the possibility of forecasting

the short-term performance in cellular networks and uses it

to improve the performance of mobile applications [24]. In

[10], Chen et al. propose a scheduling framework to maintain

high resource utilization and allocate stability of bit-rates to

each user. Their framework is close to our work as a gateway

solution in multiple cellular networks. Draxler et al. apply

a cross-layer scheduling to improve the QoE of streaming

users in [13]. They predict the channel capacity and schedule

the data transmission to reduce playback interruptions and

provide the best possible video quality to users. In [22],

Dutta et al. adopt the Markov channel model to manage

stalling for multiple streams over a time-varying bandwidth-

constrained wireless channel. However, above works only

focus on improving user experience but ignore the energy

consumption of mobile devices.

There is a plethora of work, e.g., [8], [9], [17], [21],

[23], [29], on saving energy consumption for communicating

over 3G/LTE networks. RadioJockey [21] explores program

execution in order to optimize the use of Fast Dormancy

in 3G communication and reduce energy consumption. TOP

[9] leverages the similar methodology but it needs active

participation from programmers. Both of them are not tar-

geting streaming service. Bartendr [8] reduces energy through

prefetching content in condition of good signal strength. It

needs the user to store historical signal record for prediction.

SALSA [17], eTime [23] and PerES [29] have similar strate-

gies on scheduling transmission to reduce energy consumption.

They follow the principle that defers transmission until finding

an appropriate time, depending on buffer queue length, or

performance degradation for specific applications. SALSA,

however, ignores the significant energy waste during tail time.

Bartendr, eTime and PerES are all loosely coupled with the key

metric for streaming services such as viewing latency or view-

ing interruption. They do not address the impact on viewing

fluency when scheduling data to achieve energy efficiency. The

authors of [31] design an energy-efficient resource allocation

scheme over multi-users scenarios in LTE system but it ignores

the significant tail energy. Hoque et al. make a detail analysis

between burst size and power consumption of smart phones

and design a cross-layer multimedia delivery system called

EStreamer to save energy [16]. However this system ignores

the impact of signal strength. Moreover, these previous works

have not considered the resource competition among multiple

users at the base station, which may cause serious unfairness.

In addition, many works measure and characterize 3G/LTE

networks that touch on the subject of our work. Authors

of [19] give a comprehensive analysis for the RRC state

machine and the energy consumption in 3G networks. The

LTE power characteristics are also studied in [11]. Shafiq et
al. present a large scale measurement study on characterizing

the impact of cellular network performance on mobile video

user engagement [18]. These measurements offer important

reference for parameter configuration in this paper.

Our work focuses on jointly optimizing the rebuffering time

and the energy consumption for mobile streaming in cellular

networks. We fill the gap between upper streaming proto-

col and underlying network through designing an integrated

scheduling framework for video delivery, while considering
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Fig. 1. Framework overview

the resource competition at the base station.

III. FRAMEWORK AND MODELING

In this section, we first present the overview of our frame-

work. Based on the proposed framework, we then model the

data transmission, the energy consumption and the rebuffering

time of video streaming over cellular networks.

A. Framework Overview

Figure 1 shows the overview of our video delivery opti-

mization framework. As a gateway solution, our framework

works between the base station (BS) and Internet to manage

the resources of each BS independently and schedule the

video traffic. We design the framework at the packet data

network (PDN) gateway (e.g. GGSN) because typical BSs

have minimal computational resources since they need to

be deployed at a large number of locations. Implementing

our framework on BSs would require substantial increase in

computational and memory requirements of BSs. Summarily,

there are four primary components in our framework.

Data Receiver is designed as the queue to buffer downlink

streaming data before forwarding them to users. Data Receiver

leverages the resource slicing technique [26] to separate video

flows among other downlink traffic. Only video traffic will be

scheduled by our framework.

Information Collector is responsible for collecting the

signal strength variation and the video data rate requirements

from N users. These parameters are then sent to the Scheduler

for resource allocation. Since most recent streaming protocols

are based on HTTP or RTSP. The bit rate requirement can

be obtained from DPI middleboxes that are part of existing

cellular networks [2].

Scheduler works in two alternative modes, Rebuffering

time minimization (RTM) mode and energy minimization

(EM) mode for different scenarios. We design two algorithms

in Section IV and Section V respectively for each mode.

Both algorithms use required video data rate, real time signal

strength, and BSs’ available capacity to allocate resources and

to achieve the jointly optimization.

Data Transmitter forwards the video content to each user

according to the allocation made by Scheduler.

In the runtime, the operator first selects an appropriate mode

depending on the concrete demand. RTM mode works for

minimizing the rebuffering time while limiting the energy

consumption in a certain range, while EM mode is able

to optimize the energy consumption at the constraint of

rebuffering time. Once the running mode is determined, the

Information Collector extracts the required data rate and the

signal strength information (e.g. RSSI) from the user request.

Then these requests are forwarded to the streaming server and

video contents are fetched and buffered at the Data Receiver.

After that the Scheduler makes the data allocation decision

to jointly optimize the rebuffering time and the energy and

finally video contents are delivered to the users.

B. Transmission Model

In this subsection, we present the transmission model of

streaming in cellular networks. For ease of exposition, we

assume that time is slotted and each slot lasts for τ seconds.

Further, we divide the downlink traffic from a streaming

application into multiple data shards.

Definition 1. Data shard of a streaming application is defined
as the amount of data in byte transmitted in one slot for a
single user.

The received data shard can be used by streaming ap-

plication only when it is fully accepted. At the beginning

of slot n, the Scheduler allocates data shard di(n) to user

i(i ∈ 1, 2, · · ·N). And di(n) can be used only in the next slots.

According to the transmission protocol of 3G/LTE [1], frame is

the basic data unit during the transmission process, and in the

physical layer, data are transmitted in frames with fixed length

(denoted as δ) decided by the spreading factor. We define a

decision parameter ϕi(n) to indicate the data unit amount of

user i transmitted in slot n, and we have di(n) = ϕi(n)δ.
In 3G/LTE networks, both the throughput and the power of

a mobile device are influenced by the channel quality, which

can be characterized by Signal to Interference plus Noise Ratio

(SINR) [12] or Received Signal Strength Indicator (RSSI) [8],

[28]. As RSSI can be easily acquired on mobile devices, in this

paper, we take RSSI value as a metric to indicate the channel

quality. Since one slot can be very short, we assume that the

signal strength of a user remains the same in a single slot. We

make the following definitions in our paper.

Definition 2. Signal Strength sigi(n) is defined as the signal
strength value of user i in slot n.

Previous works [8], [28], [29] have already demonstrated the

relationship between the signal strength and the throughput.

First, we define the function of throughput,

Definition 3. Throughput v(sig) is defined as the maximum
data amount transmitted per second in byte under a certain
signal strength.

In real transmission, the data transmitted to a user in one

slot is finite. The decision parameter ϕi(n) should satisfy,

ϕi(n) ≤ �τ · v(sigi(n))

δ
� (1)

Besides, due to the limited serving capability, it might be

impossible for the BS to serve infinite users simultaneously.
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We denote the serving capacity S(n) as the maximum through-

put of the BS in slot n. Thus the decision parameters among

all users should satisfy:

N∑
i=1

ϕi(n) ≤ �τ · S(n)

δ
� (2)

C. Energy Model

The total energy consumption of a device can be divided

into the data transmission energy and the tail energy [19].

As we discussed above, the instant power of a device can be

estimated via the real time signal strength [28]. Accordingly

we give the definition of power consumption.

Definition 4. Power Consumption P (sig) is defined as the
energy consumed per byte under a ceratin signal strength.

When the Scheduler allocates ϕi(n) data units to user i in

slot n, the transmission energy Ei,trans(n) can be computed

as,

Ei,trans(n) = P (sigi(n))× ϕi(n)× δ (3)

If the Scheduler does not allocate data to a user in a slot,

the mobile device will experience the tail process [19]. With

regard to energy consumption, both 3G and LTE network in-

terfaces have some similar features. Specifically, both of them

have mechanisms to avoid the frequent switching between the

idle state and the powered on state. When communicating, they

operate in different modes, which correspond to different pow-

er states. In 3G networks, these modes, namely CELL DCH

(high power state), CELL FACH (medium power state), and

CELL IDLE (low power state), map to different channel

allocations [4]. Similarly, an LTE device can be either in the

RRC CONNECTED (high power state) or the RRC IDLE

(low power state) state [5]. The transition from an active to a

more passive state is executed based on inactivity timers, and

the timer value of 3G and LTE may extend to ten seconds.

Consequently, mobile devices will not immediately switch to a

low power state after data transmission until the regular timers

expire. The energy consumption by keeping the radio on for

the period specified by the timer is often called tail energy.

We define Pd and Pf as the instant power in CELL DCH

and CELL FACH state, respectively in 3G networks. Let T1
and T2 denote the timers in state demotion of CELL DCH →
CELL FACH and CELL FACH → IDLE. If t is the time

interval between two transmissions, the tail energy can be

formulated as,

Etail(t) =

⎧⎪⎨
⎪⎩

Pd · t, 0 ≤ t < T1
Pd · T1 + Pf · (t− T1), T1 ≤ t < T2 + T1
Pd · T1 + Pf · T2, t ≥ T2 + T1

(4)

The tail energy in a slot is highly correlated with the

resource allocation in previous slots. We denote the tail energy

consumption of user i in slot n as Ei,tail(n) which can be

obtained by Eq. (4) if there is no transmission.

We define Ei(n) as the total energy consumption of user i
in slot n, depending on whether the resources are allocated to

user i for receiving data, i.e.,

Ei(n) =

{
Ei,trans(n), ϕi(n) �= 0

Ei,tail(n), ϕi(n) = 0
(5)

We define the energy average value as PE(Γ),

PE(Γ) =
1

NΓ

N∑
i=1

Γ−1∑
n=0

Ei(n) (6)

where Γ is the scheduling period.

D. Rebuffering Time

Due to the variance of transmission rate and the resource

competition of multiple users, video display interruption may

occur if the buffer in the client is lack of data. We consider

the rebuffering time as the time period for resuming playback

when the playback gets stuck. In other words, smooth playback

demands the total rebuffering time to be small enough. In our

model, we consider the video bit rate changes over time but

remains same in a slot. Let pi(n) denote to be the requested

data rate of the video for user i in slot n. The playback duration

maintained by this data shard di(n) can be formulated as

ti(n) = di(n)/pi(n).

Definition 5. Remaining Occupancy ri(n) is defined as the
playback duration that can be maintained by data in user i’s
buffer at the beginning of slot n.

Note that the data in user i’s buffer include both the received

data in current slot and the remained data. And as a data shard

can be used when fully accepted, define ri(0) = 0 and ri(n)
can be formulated as,

ri(n) = max{ri(n− 1)− τ, 0}+ ti(n− 1) (7)

Viewing interruption will occur when the remaining occu-

pancy is insufficient to support playback.

Definition 6. Rebuffering time ci(n) is the duration that lacks
of data for playback of user i in slot n.

We employ the rebuffering time as a metric to characterize

the playback experience. The smooth playback for better user

experience demands ci(n) to be small enough. Rebuffering

time in slot n is related with the remaining occupancy ri(n)
in user’s buffer:

ci(n) =

{
max {τ − ri(n), 0} , mi(n) < Mi

0, mi(n) ≥ Mi

(8)

where mi(n) is the elapsed playback time for user i and Mi

is the total playback time needed by user i. We define the

average rebuffering time as PC(Γ),

PC(Γ) =
1

NΓ

N∑
i=1

Γ−1∑
n=0

ci(n) (9)

where Γ is the total number of time slot during scheduling.
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Algorithm 1 RTMA

Inputs: User number N , Bandwidth S(n), Slot length τ ,
Signal strength sigi(n), Required data rate pi(n)
Outputs: Data Unit Allocation ϕi(n), i ∈ [1, N ]

1: di(n) ← 0, ϕsup(i) ← 1 i ∈ [1, N ];
2: Sort pi(n) in ascending order;

3: calculate ϕneed(i);
4: while S(n) > 0 and ϕsup(i) > 0, ∃ i ∈ [1, N ] do
5: for i = 1 → N do
6: if sigi(n) ≥ φ then
7: calculate ϕsup(i);
8: if ϕsup(i) > ϕneed(i) then
9: ϕi(n) = ϕi(n) + ϕneed(i), S(n) = S(n) −

δϕneed(i);
10: else
11: ϕi(n) = ϕi(n) + ϕsup(i), S(n) = S(n) −

δϕsup(i);
12: end if
13: end if
14: end for
15: end while
16: return ϕi(n), i ∈ [1, N ];

IV. REBUFFERING TIME MINIMIZATION

Streaming services are delay-sensitive. To have a good

viewing experience, the users may expect to obtain smooth

playback even though sacrificing more energy consumption.

However, the battery capacity is limited. We assume that there

is an energy bound Φ, which is the expected maximum cost

described as:

PE(Γ) ≤ Φ (10)

The first mode of our Scheduler, RTM, is designed to

optimize the global rebuffering time while limiting the energy

consumption in a certain range for multi-user scenarios. This

problem, namely rebuffering time problem, can be formulated

as:
min PC(Γ)
s.t. Constraints (1), (2) and (10)

(11)

This problem can be proved to be NP-hard by transforming

the multi-choice Knapsack problem to it. We design an online

heuristic algorithm, Rebuffering Time Minimization Algorith-

m (RTMA), to find an approximate solution for this problem.

When getting the same amount of data, the rebuffering time

is affected by the requested data rate pi(n). The basic idea of

RTMA is to preferentially guarantee the data requirement of

the users with the smallest required data rate while satisfying

the energy limit.

Algorithm 1 shows how we allocate data to each user. The

objective of RTMA is to decide how many data units should

be allocated for each user in a slot. Given the same amount

of data in a slot, the smaller the required data rate is, the

longer time that the data will maintain a smooth playback.

Hence in each slot, our algorithm first sorts the users based

on the required data rate and initiates the allocation array to

zero (steps 1-2). In step 3, we calculate the data requirement

ϕneed(i), as the minimum for guaranteeing smooth playback,

where ϕneed(i) = �τpi(n)/δ	. After initiation, in order to

improve the bandwidth utilization, we iteratively update ϕi(n)
until the available resource S is exhausted or the allocated

size has reached its bound determined by its real time signal

strength (steps 4-15). To meet the energy constraint in Eq.

(10), we apply an approximate conversion to map the energy

consumption to signal strength, according to Definition 4.

Assume that a certain signal strength, say φ, satisfies the

equation,

Φ =
1

2
[P (φ)× v(φ)× τ + τPtail] (12)

where Φ is the energy limitation estimated as the mean of the

maximum transmission power and the tail energy in a slot.

Given the energy constraint Φ, we can derive φ from Eq. (12).

Thus we can consider φ as a “signal strength limitation” that

if the signal is weaker than φ for user i, Scheduler will not

allocate data to user i to satisfy Φ. This limitation is given

in step 6 for each iteration. Note that the conversion there is

stricter than Eq. (10) because we require that each user should

satisfy the limitation.

If the signal strength is strong enough, we calculate ϕsup(i),
defined as the available data units that the BS can still support

for allocation, before updating ϕi(n) in step 7. The value of is

ϕsup(i) determined by the available throughput of user i and

the capacity of the BS. In each iteration, ϕsup(i) is updated:

ϕsup(i) = 
min{v(sigi(n))−δϕi(n), τS(n)−δϕsum(n)}/δ�
where ϕsum(n) is the total data units that has already been

decided to allocate to users in slot n, and can be calculated

as ϕsum(n) =
∑N

i=1 ϕi(n). In order to maintain the smooth

playback of the next slot and serve more users as possible, we

only assign the needed data in a iteration. When allocating

data in each iteration, if ϕsup(i) is larger than ϕneed(i),
RTMA appends ϕneed(i) to ϕi(n) (step 9). Otherwise ϕi(n)
is updated by an increment of ϕsup(i) (step 11). Finally the

allocation result is obtained after iteratively updating ϕi(n) in

slot n.

The Algorithm RTMA is local optimal in one slot without

the energy limitation Eq. (10). When the energy limitation

exists, the algorithm will not be local optimal as RTMA applies

a stricter limitation than Eq. (10). Some users could sacrifice

their playback quality to satisfy the energy limitation of the

whole system.

V. ENERGY MINIMIZATION

The battery life is also an important consideration for mobile

users. To conserve the energy consumption, EM mode can

be used to optimize the energy consumption and restrict the

rebuffering time in a tolerable range. We have the following

average rebuffering time constraint:

PC(Γ) ≤ Ω (13)

405404404404404404
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where Ω is the bound of rebuffering time to guarantee the

viewing experience. The above optimization can be described

as an energy minimization problem.

min PE(Γ)
s.t. Constraints (1), (2) and (13)

(14)

This problem can also be proved to be NP-hard by trans-

forming the multi-choice Knapsack problem to it. We design

an online algorithm that can be efficiently applied. It takes the

user requirement on the viewing performance into account, and

ensures stable system performance under dynamic user traffic

and channel variance. Let Γi denote the total slot number of

user i in a video session. Combined with Eq. (7) and Eq. (8),

we can get the total rebuffering time as Γi minus the actual

playback time,

PCi(Γi) = τΓi −
Γi−1∑
n=0

ti(n) (15)

To deal with the rebuffering time limitation, we design a

special queue mechanism to control the rebuffering time. Note

that the receiving data of user i in slot n is di(n), which can

maintain the playback for ti(n) = di(n)/pi(n) seconds and

the slot length is τ . Then, we simply construct the rebuffering

time recursion relation as follows,

PCi(n + 1) = PCi(n) + τ − ti(n) (16)

For all the scheduling period, PCi(n) is similar with the

sum of the rebuffering time. We can get the Eq. (15) from E-

q. (16) through accumulation. The queue length of rebuffering

time PCi(n) during the playback can be positive or negative.

A negative PCi(n) indicates that there still exists enough

data in the i-th user’s playback buffer. The remaining data

in the buffer will contribute to the next slot’s playback, while

a positive PCi(n) indicates the accumulated rebuffering time.

In order to control PCi, we use the Lyapunov optimization

framework and define the Lyapunov function as [33]:

L(n) =
1

2

N∑
i=1

(PCi(n))2 (17)

In order to keep the queue stable and push the Lyapunov

function towards a lower congestion state, we introduce the

Lyapunov drift Δ(n) from the perspective of mathematical

expectation,

Δ(n) = E{L(n + 1)− L(n)|PC(n)}

≤ B +
N∑
i=1

E{PCi(n)× (τ − ti(n))|PC(n)} (18)

where PC(n) =
∑N

i=1 PCi(n) and B = 1
2

∑N
i=1(τ

2+ t2max),
tmax ≥ ti, ∀i ∈ N , representing the maximum playback time

that a data shard can support for any user i in a time slot.

Following the Lyapunov optimization approach [33], con-

sidering playback performance and energy consumption simul-

taneously, we construct the drift−plus−penalty expression

below,

Δ(n) + V E(E(n)|PC(n)) (19)

where E(n) =
∑N

i=1 Ei(n) and the conditional expectation

E{E(n)} indicates the average energy consumption PE. The

parameter V indicates the weight of energy consumption. A

larger V indicates more energy saving and vice versa. There-

fore, we have transformed the original online optimization

problem into the problem of minimizing the above expression.

Combined with Eq. (18), the drift − plus − penalty
expression of Eq. (19) is controlled within an upper bound

as follows,

Δ(n) + V E(E(n)|PC(n))

≤ B + V E(E(n)|PC(n))

+
N∑
i=1

E(PCi(n)× (τ − ti(n))|PC(n))

(20)

Following the design principle of the Lyapunov framework,

the underlying objective of our energy minimization problem

is to minimize the upper bound of the drift−plus−penalty
expression. Minimizing the RHS of the equation above will

guarantee the rebuffering time with the minimum energy

consumption.Since B and τ are both constants, the energy

optimization problem can be transformed into the following

problem,

min V · E(n) +
∑N

i=1(PCi(n)× (τ − ti(n)))
s.t. Constraints (1) and (2)

(21)

We continue to derive the objective and have,

V · E(n) +
N∑
i=1

(PCi(n)× (τ − ti(n)))

=
N∑
i=1

[V · Ei(n) + PCi(n)(τ − ti(n))]

=

N∑
i=1

f(i, ϕi(n))

(22)

where ti(n) = δϕi(n)/pi(n). Ei(n) and PCi(n) are deter-

mined by the amount of decision parameter ϕi(n) in slot n.

Hence we simplify the equation into
∑N

i=1 f(i, ϕi(n)). Now

the basic goal is to minimize the sum of f(i, ϕi(n)). From

Eq. (22), if PCi(n) is negative, (τ − ti(n)) should be positive

to minimize
∑N

i=1 f(i, ϕi(n)). In other words, if the buffer

of user i is not empty (PCi(n) < 0), to ensure the fairness

among multiple users, we should not allocate too much data

to user i.
To find the minimum solution of the above problem, we

design an online algorithm Energy Minimization Algorithm

(EMA) to solve the problem with the constraints of Eq. (1)

and Eq. (2). To minimize Eq. (22), we build a dynamic

programming equation of slot n as,

a[i][M ] = min{a[i− 1][M − ϕi(n)] + f(i, ϕi(n)), a[i][M ]}
where M is the number of total data units that the Scheduler

decides to transmit to the previous i − 1 users, and ϕi(n) is

the amount of data units that the Scheduler decides to transmit

to user i in slot n.
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Algorithm 2 EMA

Inputs:User number N , Bandwidth S(n), Slot length τ ,
Signal strength sigi(n), Required data rate pi(n), Lyapunov

parameter V
Outputs: Data Unit Allocation ϕi(n), i ∈ [1, N ]

1: Compute PCi(n) using Eq. (12);

2: ϕi(n) ← 0, i = 1, 2, . . . , N ;

3: for M = 0 → 
τv(sig1(n))/δ� do
4: a[1][M ] = min{f(1,M)};
5: end for
6: g(1,M) ← argminM a[1][M ];
7: for i = 2 → N do
8: for M = 0 → 
τ · S(n)/δ� do
9: for ϕi(n) = 0 → 
τv(sigi(n))/δ� do

10: a[i][M ] = min{a[i−1][M−ϕi(n)]+f(i, ϕi(n))};
11: end for
12: g(i,M) ← argminϕi(n) a[i][M ];
13: end for
14: end for
15: DN (n) ← argminM a[N ][M ]; ϕN (n) = g(N,DN (n));
16: for i = N − 1 → 1 do
17: Di(n) = Di(n+ 1)− ϕi(n+ 1); ϕi(n) = g(i,Di(n));
18: end for
19: return ϕi(n), i ∈ [1, N ];

Algorithm 2 shows the detail of EMA. In steps 3 − 5, we

get the border condition of the problem. The algorithm tries

to find the minimum
∑N

i=1 f(i, ϕi(n)) (steps 7− 14). We use

g(i,M) to record the best ϕi(n) when the total data units

assigned to the previous i− 1 users are M . We finally obtain

the data allocation through steps 16− 18.
We analyze the boundedness property of our design and

prove that PE and PC are both controlled by two different

upper bounds.

Theorem 1. If Γ →∞, PE∞ and PC∞ hold,

PE∞ = lim sup
Γ→∞

1

Γ

Γ−1∑
n=0

N∑
i=1

Ei(n) ≤ E∗ +
B

V

PC∞ = lim sup
Γ→∞

1

Γ

Γ−1∑
n=0

N∑
i=1

ci(n) ≤ B + V E∗

ε

(23)

where B and ε are both positive constants, and E∗ is the

theoretically optimal solution (minimum energy cost). Please

refer to the proof in Appendix A.

VI. PERFORMANCE EVALUATION

We implement RTMA and EMA in around 1000 lines of

C++ codes. In our experiment, the slot number is set to 10000
and each slot lasts τ = 1s. The video length that users require

is set as random value ranging from 250MB to 500MB with

the variable required data rate from 300KB/s to 600KB/s.
The service capacity S at the BS is set to 20MB/s for

all slots. Recall that the RRC models of 3G and LTE are

similar and only different in certain parameters (e.g. timers

and the power in each state) as described in Section III-A,

it can be expected that we can obtain similar results in LTE

networks. We set the radio parameters following the previous

measurements in 3G networks [19].

According to Definition 3 and 4, the throughput v and the

power cost per byte P are highly associated with the instant

signal strength. Prior measurements [7], [11], [28] in cellular

networks have shown that, both the power and the throughput

can be numerically fitted as two functions related with signal

strength. Therefore we exploit the results of [28] and use two

functions to fit the throughput and the power.

v(sig) = 65.8× sig + 7567.0(KBps)

P (sig) = −0.167 +
1560

v(sig)
(mJ/KB)

(24)

The parameters of RRC state we set here are based on [29],

where the power of CELL DCH and CELL FACH state is

732.83mW , 388.88mW respectively in a 3G network. We

set the timers T1 and T2 to 3.29s and 4.02s. We set the signal

strength variation following a sine function in the range of

−50dBm to −110dBm with 30dBm white Gaussian noise

intensity. Since the signal strength variation may be different

from each other, we add different phase shifts for the N sine

functions.

A. Evaluation of RTMA

We now verify the effectiveness of RTMA. For comparison,

we implement a default streaming system as the baseline that

delivers video contents to each user as much as possible to

make full use of throughput and satisfy the required data rate.

The value of average rebuffering time and energy consumption

achieved in this method, which we denote as default rebuffer-

ing time and default energy, are used as baseline values. Note

that the goal of RTMA is to optimize the rebuffering time

while limiting the energy consumption within Φ. We set the

energy constraint Φ = α ∗ EDefault, where EDefault is the

default energy and α is a tunable constant coefficient. We set

α = 1 to compare the rebuffering time with or without RTMA

under the same energy consumption. Furthermore, to evaluate

how RTMA manages the resource competition at the BS in

multi-user scenarios, we define a fairness metric for user i as

Fi = di/dneed(i), where di is the allocated data size for user

i and dneed(i) is the required data size in a slot. We define

the fairness index as (
∑N

i=1 Fi)
2
/(N

∑N
i=1 Fi

2) based on the

Jain Fairness Index [25]. A fairness index close to 1 indicates

the fair allocation for all users.

We first compare the fairness index result with or without

RTMA when user number is 40 and the average required data

amount is 350MB. As shown in Figure 2, the fairness index

of RTMA is larger than 0.7 for more than 90% time slots for

all users across the BS, while for default strategy, the fairness

index is below 0.2 for about 50% slots. This is because there

exists resource competition at the BS and the default strategy

allocates data as much as possible, hence some users cannot

obtain enough data. RTMA achieves much higher fairness

compared to the default strategy since it iteratively allocates
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Fig. 2. Fairness
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Fig. 3. Rebuffering time
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Fig. 4. Efficacy of RTMA

data for each user. Thus the prior users will not seize too much

bandwidth and cause unfairness. To evaluate the reduction of

rebuffering time, we also compare the rebuffering time per slot,

ci among all users. As depicted in Figure 3, RTMA has lower

rebuffering time, and about 90% of the slots have less than

1.5s rebuffering time. We observe that about 57% users with

the default strategy have a very low unsaturated time (close

to zero) but more than 20% users have suffered rebuffering

time more than 11s. This imbalance of rebuffering time among

multi-users is caused by the resource competition at the BS.

Further, we adjust α to evaluate how the energy constraint

impacts on the rebuffering time. The computation runs inde-

pendently when α is set to 0.8, 1, 1.2 respectively in different

scenarios with various user numbers or total required data

amounts. The comparison results of rebuffering time are shown

in Figure 4. As we adjust the energy constraint by tuning

α, a loose energy constraint with α = 1.2 provides more

rebuffering time reduction. However, under a tighter constraint

(e.g. α = 0.8), RTMA can still achieve lower rebuffering time

compared with the default strategy in certain cases. The results

in Figure 4 indicate that we can adjust α to meet various

energy demands.

We then evaluate the performance of RTMA with two

other common online scheduling algorithms, i.e. “Throttling”

[15] and “ON-OFF” [14]. We set the energy consumption

limitation Φ of RTMA to the default energy consumption.

We plot the average rebuffering time and energy consumption

of each user per slot with different algorithms in Figure 5.

Throttling delivers the video contents at a rate that is lower

than the bulk transfer capacity but higher than the encoding

rate, which ensures the continuous transmission of users to

achieve small rebuffering time. As the user number raises, it is

hard to meet all the rate requirement and hence the rebuffering
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Fig. 5. Performance comparison of RTMA

time increases dramatically. ON-OFF is an algorithm that sets

a low threshold of the buffer therefore it obtains a smaller

rebuffering time than the default strategy. Since ON-OFF does

not consider the resource competition among multiple users,

the rebuffering time is much higher than that of RTMA. RTMA

outperforms other algorithms with the increasingly resource

competition, as shown in Figure 5(a). The black bar in Figure

5(b) indicates the tail energy of each strategy. When we set

α = 1, RTMA’s energy consumption is smaller than the default

strategy and slightly higher than “ON-OFF” which deliveries

the data in burst to reduce the active time of wireless interface.

When it comes to 40 users, RTMA can still maintain a smooth

transmission of all users while reducing the tail energy.

In summary, we find that RTMA obtains the shortest

rebuffering time because it considers the required data rate

and makes the bandwidth full utilized while satisfying energy

consumption constraint. RTMA reduces at least 68% rebuffer-

ing time compared with Throttling, ON-OFF and the default

strategy.

B. Evaluation of EMA

EMA is designed to minimize energy consumption under

the constraint of rebuffering time. Similar with the evaluation

of RTMA, we use the default rebuffering time as the upper

bound in Eq. (13), thus we set Ω = β ∗ RDefault, where

RDefault is the default rebuffering time and β is a constant

coefficient. We plot the fairness index and the power con-

sumption in each slot among all users with or without EMA

in Figure 6 and Figure 7. The user number here is set to 40
and the average required data amount is 350MB. As shown

in Figure 6, EMA achieves higher fairness index because it

designs a negative queue to ensure fairness. During the video

session, EMA tries to allocate data under better signal strength

to conserve energy. Consequently, as depicted in Figure 7,

EMA conserves more energy than the default strategy and

about 50% slots of EMA have the power consumption lower

than 25J .

To evaluate EMA in different scenarios, we vary the user

number and the total data amount, and plot their energy

consumption in Figure 8. Due to the increasing user number

or the required data amount, the workload at the BS increases

and raises intense competition. EMA (β = 1) can maintain

the same rebuffering time as default strategy and achieve

more than 48% energy reduction in various scenarios. We also
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Fig. 8. Efficacy of EMA

observe that a tighter rebuffering time constraint (β = 0.8)
can still reduce the energy consumption and conversely if we

increase this upper bound (β = 1.2), EMA will achieve better

energy efficiency. In other words, β can be tuned to satisfy

various rebuffering time requirement.

In addition, we compare EMA with other two online en-

ergy efficient scheduling algorithms, i.e. “SALSA” [17] and

“EStreamer” [16]. We set the rebuffering time bound Ω of

EMA to the EStreamer’s rebuffering time. We plot the energy

consumption and the rebuffering time for each algorithm

in Figure 9. SALSA intends to minimize the energy while

keeping a finite waiting queue, but it ignores the significant

tail energy, which weakens the effectiveness of conserving

energy consumption. EStreamer is an algorithm that leverages

the caching management to reduce the active time of wireless

interface. Its energy consumption is higher than that of EMA

because it raises significant tail energy in the idle period

between the transmission bursts. EStreamer sets the burst size

according to the buffer size, so its rebuffering time is smaller.

Both SALSA and EStreamer do not take the impact of signal

strength into consideration.

Clearly, EMA obtains less energy consumption because

EMA jointly considers signal strength and tail energy to opti-

mize the energy consumption while satisfying the rebuffering

time constraint. In summary, EMA reduces at least 48% energy

consumption compared with SALSA and the default strategy,

and achieves more than 27% energy reduction compared with

EStreamer.

C. Discussion of RTMA and EMA

The two algorithms, RTMA and EMA, are proposed to

jointly optimize media streaming according to the concrete

rebuffering time or the energy constraint. Essentially, the basic
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Fig. 9. Performance comparison of EMA
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Fig. 10. RTMA and EMA comparison

idea of both algorithms is to make trade-off between rebuffer-

ing time and energy. Through scheduling video delivery, they

try to optimize one metric while meeting the constraint of the

other one.

To better understand this trade-off, we plot the “rebuffering

time”-“energy” panel of RTMA (α = 1), EMA (β = 1) and

default scheduler with different user numbers from 20 to 40

in Figure 10. It can be seen that, with the constraint of default

energy, the “rebuffering time”-“energy” curve of RTMA per-

forms a drift to the negative direction in rebuffering time axis

for each point compared with baseline. With the same energy

consumption, RTMA can always achieve lower rebuffering

time than default strategy. Meanwhile, EMA performs a sim-

ilar drift in the energy axis and optimize energy consumption

with the limitation of default rebuffering time. The comparison

results give the indication that our algorithms RTMA and EMA

can achieve significant rebuffering time or energy reduction

for various demands. Through our framework, it is flexible to

select the appropriate mode and set the constraint to obtain

rebuffering time or energy optimization.

VII. CONCLUSION

The playback fluency and battery endurance have become

significant concerns for streaming services in cellular network-

s. In this paper, we investigate the joint media streaming

optimization for energy consumption and rebuffering time.

We first proposed an optimization framework to schedule

video traffic in cellular networks. Further we designed two

algorithms that leverage cross-layer features to jointly optimize

energy consumption and rebuffering time on the proposed

framework. Specifically, RTMA aims at achieving minimum

rebuffering time with limited energy and EMA optimizes ener-

gy consumption while meeting the rebuffering time constraint.

These two algorithms can work for the two complementary
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modes in our frameworks respectively. Extensive simulations

demonstrate that the proposed algorithms achieve promising

effectiveness on jointly optimizing energy and rebuffering

time. The RTM algorithm reduces at least 68% rebuffering

time and the EM algorithm achieves more than 27% energy

reduction compared with other state-of-art strategies.
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APPENDIX

Appendix A: Proof of Theorem 1
Proof: Since the arrival process is strictly within the

network capacity, there exists one stationary randomized con-

trol policy that can stabilize the queue, which satisfies the

following properties:

E{E(n)} = E∗

E{τ − ti(n)} ≤ ε
(25)

where we define E∗ as the minimum achievable power expen-

diture using any control policy that achieves delay stability.

Then we apply these two equations into Eq. (18):

Δ(n) + V · E{E(n)} ≤ B + V · E∗ − εPC(n) (26)

where PC(n) =
∑N

i=1 PCi(n).
Taking an expectation for Eq. (26) and using the iterative

expectation law:

E{L(n+1)−L(n)}+V ·E{E(n)} ≤ B+V ·E∗−εE{PC(n)}
Then, summing over all time slots n ∈ {0, 1, · · · ,Γ − 1}

and diving by Γ:

E{L(Γ)− L(0)}
Γ

+
V

Γ

Γ−1∑
n=0

E{E(n)} ≤ B+V ·E∗− ε

Γ

Γ−1∑
n=0

E{PC(n)}

Since the Lyapunov function L(n) is non-negative by defi-

nition and so is E(n), we have:

1

Γ

Γ−1∑
n=0

E{E(n)} ≤ B

V
+ E∗ +

E{L(Γ)− L(0)}
V · Γ (27)

1

Γ

Γ−1∑
n=0

E{PC(n)} ≤ B + V · E∗ + E{L(Γ)− L(0)}/Γ
ε

(28)

When Γ →∞, we obtain equations Eq. (23).
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